
IEEE TRANSACTIONS ON SERVICE COMPUTING, VOL. XX, NO. XX, X XXXX 1

Cloud Service Reliability Enhancement via
Virtual Machine Placement Optimization

Ao Zhou, Shangguang Wang, Member, IEEE, Bo Cheng, Member, IEEE, Zibin Zheng, Member, IEEE,
Fangchun Yang, Senior Member, IEEE, Rong N. Chang, Senior Member, IEEE

Michael R. Lyu, Fellow, IEEE, and Rajkumar Buyya, Fellow, IEEE

Abstract—With rapid adoption of the cloud computing model, many enterprises have begun deploying cloud-based services.
Failures of virtual machines (VMs) in clouds have caused serious quality assurance issues for those services. VM replication
is a commonly used technique for enhancing the reliability of cloud services. However, when determining the VM redundancy
strategy for a specific service, many state-of-the-art methods ignore the huge network resource consumption issue that could
be experienced when the service is in failure recovery mode. This paper proposes a redundant VM placement optimization
approach to enhancing the reliability of cloud services. The approach employs three algorithms. The first algorithm selects an
appropriate set of VM-hosting servers from a potentially large set of candidate host servers based upon the network topology.
The second algorithm determines an optimal strategy to place the primary and backup VMs on the selected host servers with
k-fault-tolerance assurance. Lastly, a heuristic is used to address the task-to-VM reassignment optimization problem, which
is formulated as finding a maximum weight matching in bipartite graphs. The evaluation results show that the proposed
approach outperforms four other representative methods in network resource consumption in the service recovery stage.

Index Terms—Cloud computing, cloud service, reliability, fault-tolerance, datacenter, network resource.

F

1 INTRODUCTION

C LOUD computing has evolved as an important and
popular computing model [1] [2]. Similar to public

utility services, computing resources in a cloud computing
environment can be provisioned in an on-demand manner
[3] [4], and can be purchased via a pay-as-you-go model
[5] [6]. This obviates the need to costly over-provision on-
premise computing resources to accommodate peak de-
mand [7] [8]. Thus, deploying services into the cloud has
become a growing trend [9].

Reliability is an important aspect of Quality of Service
(QoS) [10]. With many virtual machines (VMs) running in a
cloud datacenter, it is difficult to ensure all the VMs always
perform satisfactorily [11]. In reality, many cloud services
failed to fulfill their reliability assurance commitment due
to VM failures [12]. It is imperative to enhance the reliability
of VM-based services in a cloud computing environment [7]
[13].

Many solutions have been proposed to address service
reliability issues. Fault removal, fault prevention, fault fore-
casting, and fault tolerance are four basic reliability enhance-

• A. Zhou, S. Wang, B. Cheng, F. Yang are with the State Key Laboratory
of Networking and Switching Technology, Beijing University of Posts and
Telecommunications.
E-mail: hellozhouao@gmail.com; sgwang@bupt.edu.cn; cheng-
bo@bupt.edu.cn; fcyang@bupt.edu.cn

• Z. Zheng is with School of Data and Computer Science, Sun Yat-sen
University. E-mail: zhzibin@mail.sysu.edu.cn.

• M. R. Lyu is with Department of Computer Science & Engineering, The
Chinese University of Hong Kong. E-mail: lyug@cse.cuhk.edu.hk.

• R. N. Chang is with IBM Research. E-mail: rong@us.ibm.com.
• R. Buyya is with Cloud Computing and Distributed Systems (CLOUDS)

Lab, Department of Computing and Information Systems, The University
of Melbourne, Australia. E-mail: rbuyya@unimelb.edu.au.

Manuscript received ; revised .

ment techniques [14]. The first three of them attempt to
identify and remove faults that occur in the system with
the goal of preventing impact-making faults. This goal is
unrealistic for a complex computing system like a cloud
computing environment in production, in which VM failure
is inevitable [15]. Fault tolerance techniques, which try to
ensure service continuity when failure occurs, complements
those three techniques with a fundamentally different ser-
vice reliability enhancement approach and with a more
practical reliability management goal for cloud services [16]
[17].

Many fault tolerance mechanisms have been proposed
[18]. Checkpointing [19] is a common fault tolerance mech-
anism for cloud services. The checkpointing mechanism
periodically saves the execution state of a running task
(e.g., as a VM image file [20]), and enables the task to be
resumed from the latest saved state after failure occurs.
However, taking checkpoints periodically and resuming a
failed service via checkpoint image(s) are time-consuming.
This mechanism may incur too much performance overhead
when it is deployed for some small scale tasks or dividable
tasks (e.g., a data analytic task that can be divided into a set
of small tasks).

Replication [21], e.g., one-to-one and one-to-many stand-
by, is another common fault tolerance mechanism, which
exploits redundant deployment of computing resources,
e.g., VMs. When the fault tolerance capability of a specific
service is provisioned via VM replication, the redundant
VMs are classified into two categories: primary VMs and
backup VMs. Notable approaches [22] [23] [24] were devel-
oped to reduce the implementation cost by exploiting the
degree of redundancy.

k-fault tolerance [25] [26] is a specific type of



IEEE TRANSACTIONS ON SERVICE COMPUTING, VOL. XX, NO. XX, X XXXX 2

replication-based fault tolerance mechanism and support-
s a configuration-based fault-tolerance measurement of a
server-based service. A k-fault-tolerant service must be con-
figured with k additional servers such that the minimum
server configuration for the service can still be satisfied
when k hosting servers fail simultaneously. In a VM-based
cloud environment, for example, deploying a specific ser-
vice on only one server makes the service 0-fault-tolerant
(because the service becomes unavailable when the only
hosting server fails), regardless the number of redundant
VMs that may have been deployed on the same server and
the feasibility of restoring the affected service via server
reboot or replacement.

When deploying a replication-based fault tolerance
mechanism for cloud services, we note that re-assigning an
incomplete task from one failed primary VM to a backup
VM often requires a huge amount of data to be retrieved
and processed once more from the central storage servers.
This is a time-consuming and network-resource-consuming
process. Moreover, the host server on which a specific failed
VM resides may still be running and be able to let the
data used by the failed VM accessible from within the VMs
running on other servers, e.g., the backup VMs that are
in proximity to the failed primary VM. Thus, appropriate
VM placement could save considerable amount of time and
network resources in failure recovery mode.

Aiming at reducing the lost time and the network re-
source consumption when the k-fault-tolerance requirement
must be satisfied, this paper proposes a novel redundant
VM placement approach to enhancing the reliability of
cloud services, which is named OPVMP (optimal redundant
virtual machine placement). The commercialization nature
of network resources in cloud computing prompted us to
make OPVMP reduce network resource consumption in
addition to enhancing cloud service reliability.

The proposed approach is a three-step process with one
algorithm for each of the steps, namely (1) host server
selection, (2) optimal VM placement, and (3) recovery s-
trategy decision. The first algorithm selects an appropriate
set of VM-hosting servers from a potentially large set of
candidate host servers based upon the network topology.
The second algorithm determines an optimal strategy to
place the primary and backup VMs on the selected host
servers. Lastly, a heuristic is used to address the task-to-VM
reassignment optimization problem, which is formulated as
finding a maximum weight matching in bipartite graphs.

We construct an experimental platform based on our
previous research results [27] [28]. Effectiveness of the pro-
posed approach has been evaluated via the platform. The
evaluation was done by comparing OPVMP against four
other representative redundant VM placement algorithms
in terms of four network resource consumption related
performance metrics.

All of the five approaches were implemented in FT-
CloudSim. The evaluation results show that OPVMP out-
performs the other four methods in network resource con-
sumption in the service recovery stage.

The remainder of this paper is organized as follows.
Section 2 presents a review of related work. In Section
3, the background of the proposed approach is presented.
Technical details of the proposed approach are illustrated

in Section 4. Experimental evaluation results are reported in
Section 5, and the conclusion is presented in Section 6.

2 RELATED WORK

Enhancing the reliability of cloud services is an important
aspect of cloud computing and has received considerable
attention from the research community. The complex cloud
computing environment poses particular challenges to re-
searchers. A variety of service reliability enhancement ap-
proaches have been proposed to address related issues.

Checkpointing is a widely used basic fault tolerance
mechanism that functions by periodically saving the exe-
cution state of a VM as an image file. However, datacenters
have limited network resources and may readily become
congested when a huge number of checkpoint image files
are transferred. Attempting to avoid this problem, Zhang, et
al. [29] presented a theoretical delta-checkpoint approach in
which the base system only needs to be saved once the first
checkpoint completes and subsequent checkpoint images
only contain the incrementally modified pages. A theoretical
delta-checkpoint approach was implemented by Goiri, et al.
in [19]. A further reduction in network resource consump-
tion was developed by Limrungsi, et al. [20], who proposed
a peer-to-peer checkpoint approach in which the checkpoint
images are stored on the neighboring host servers. If the
storage server is located in the same pod as the service-
providing server, it is unnecessary to transfer the checkpoint
images via core switches.

For some small scale tasks or dividable tasks, for exam-
ple, Scientific Computing, one huge dataset can be divided
into smaller data blocks. Processing each data block would
consume much less time than doing that for the huge source
dataset. In this case, the cloud supplier may choose other
mechanisms in terms of reduction of the checkpointing
execution and service resuming overhead.

Replication is another type of reliability assurance mech-
anism. Replication is based on the exploitation of redun-
dancy. One-to-one and one-to-many standbys are two well
known mechanisms. Xu , et al. in [21] tried to map each
primary VM to a backup VM. A primary VM and its map-
ping backup node form a survivable group. A task can be
completed in time if at least one VM in the survivable group
works well. The work takes the bandwidth reservation into
consideration when solving the mapping problem. In this
regard, an optimal algorithm that maps a survivable group
to the physical data center was proposed [21].

How to reduce the cost of replication is a problem that
has been addressed by several proposals [22] [23] [30]. All
of these proposals aim to reduce the degree of redundancy.
Another effort [30] was based on the fact that different
modules have different redundancy requirements and that
modules with a higher invocation frequency are more sig-
nificant than other modules. Thus, the work attempted to
rank all the modules of a system based on their significance
value. The same problem was approached differently [24]
by adjusting the redundancy of the same module under
different execution conditions.

k-fault tolerance [25] [26] is another approach aiming
at reducing the cost of implementing redundancy. k-fault



IEEE TRANSACTIONS ON SERVICE COMPUTING, VOL. XX, NO. XX, X XXXX 3

tolerance ensure that the simultaneous failure of any k
computing nodes would not make the service unavailable.

There is a large quantity of tasks. To complete all tasks
in time, a service would be deployed in several VMs. The
tasks are scheduled to the VMs according to an appropriate
scheduling strategy. In a cloud computing environment, the
computing resources of each server are virtualized to several
VMs. Both hardware and software problems can result in
VM failures. When a host server crashes, all the VMs it
is hosting will no longer operate. The more the number
of VMs providing the same service is placed on the same
server, the more serious the damage is when a host server
fails. Taking this into consideration, Machida, et al. in [25]
proposed a redundant VM placement approach to ensuring
k-fault tolerance.

However, when restarting a task from one backup VM,
we need to re-fetch the data to be processed from the
central database. The process is time-consuming and net-
work resource-consuming for cloud services. We note that
the host server on which the failed VM runs may store a
copy of data for the task. If the backup VM can fetch the
data it needs directly from that host server despite of the
unexpected primary VM failure, a lot of data processing
time and network resources can be saved if the primary
VMs and the backup VMs are properly allocated.

One major difference between our proposed cloud ser-
vice reliability enhancement approach and related work is
that we use a redundant VM placement method and op-
timize network resource consumption through appropriate
placement of the required VMs.

3 PRELIMINARIES

This section provides the background and motivation for
our work as well as explains how we formulate the redun-
dant VM placement problem as an optimization problem.
The notations listed in Table 1 will be used throughout the
rest of the paper.

3.1 Background

In the cloud computing environment, a statistically rare
failure event may be a common occurrence due to scale
[31]. Cloud service reliability enhancement is becoming an
important research challenge.

Fig. 1 shows the task processing model we use. The
cloud service is employed in several VMs because, consid-
ering the huge amount of service requests, the computing
power of a single VM would be insufficient. Upon receiving
the service requests, the divider partitions the large scale
task into smaller sub-tasks. Processing each sub-task would
not consume too much time. Based on the scheduling algo-
rithm, each task to one of the service-providing VMs. Each
VM has a task waiting queue. Since a VM may fail due to
a software or hardware fault, an assigned task may not be
completed as scheduled, and may in turn delay the entire
service request operation. k-fault tolerance [25] [26] can be
chosen by the cloud service provider to reduce lost time and
to ensure service reliability. Besides the m number of prima-
ry VMs, there are k backup VMs for each service. k-fault
tolerance serves to ensure that the task processing service

TABLE 1
Notations

Symbol Meaning

PMi
The physical machine or host server in the data center,
i = 1, 2, . . .

V M j The virtual machines in the data center, j = 1, 2, . . .
podx The pods in the data center, x = 1, 2, . . .
Ty The task submitted by users, y = 1, 2, . . .
subnetl The subnet in the data center, l = 1, 2, . . .

max subnet The number of subnets which contain available host
servers

S A service
V MP(S) Return the primary VMs of S
V MB(S) Return the backup VMs of S
V MF (S) Return current failed VMs of S

PM(S) Return all the servers on which service providing
VMs of S locate

Succ The next element after current element
size Return the element number of a list
DSize Return the size of the data stored in a server
a The number of available PM in a subnet
m The number of primary VM of S
k The number of backup VM of S
min Return the min value of the inputs
length The linkage length
copy Copy all data from a vector to another vector

Fig. 1. Task processing model

will not be down in the event of the simultaneous failures
of any k computing VMs or servers. All the primary and
backup VMs are placed on different host servers. Otherwise,
when a host server crashes, all the VMs it is hosting will no
longer operate. Failures of one of the primary VMs result
in it being mapped to a backup VM, and the tasks in its
waiting queue are reassigned to the backup VM.

3.2 Motivation
Suppose there are m virtual machines that provide service S.
All tasks of S are assigned to the m virtual machines based
on appropriate strategy. When k-fault tolerance replication
is adopted to ensure the service reliability, there are k backup
virtual machines for S. To avoid both hardware and software
problems that lead to VM failures, the primary and backup
virtual machines are distributed to different servers. When
a primary VM fails, it is mapped to a backup VM, and the
tasks in its waiting queue are re-assigned to the backup
VM. The backup VM need to re-fetch the data from the
database. This scheme has two shortcomings. First, the
storage servers are continually required to process a huge



IEEE TRANSACTIONS ON SERVICE COMPUTING, VOL. XX, NO. XX, X XXXX 4

number of data read and write requests, which is sometimes
time consuming [20]. Second, transferring large amounts
of data consumes considerable network resources. When
a VM failure event is caused by hardware problems, the
mapped backup virtual machine re-fetches the needed data
from the database. When a VM failure event is caused by
software problems and the server which hosts the failed
VM has a copy of data, the backup VM can fetch the data
from the server. More network resources can be saved if
the failed primary VM and the backup VM are in proximity
to each other. Therefore, appropriate VM placement could
save considerable amount of time and network resources in
the failure recovery mode. To save more network resources,
we place the primary and backup virtual machines by
considering the network topology of the datacenter.

Datacenter networks always adopt a tree-like structure
[32] of which the fat-tree network structure is a commonly
used datacenter network architecture [33]. A fat-tree net-
work typically consists of trees with three levels of switches
[34] as illustrated in Fig. 2, in which a fat-tree datacenter
network with four ports is depicted. The switches in the
top, middle, and bottom layers are referred to as root, ag-
gregation, and edge switches, respectively. The host servers
physically connect to the network via the edge switches. All
the host servers sharing the same edge switch with each
other are addressed in the same subnet. All host servers
sharing the same aggregation switches are addressed in
the same pod. Upper layer switches transfer data from
more host servers, and are therefore more likely to become
congested than the lower layer switches [35]. Therefore,
reducing the network resource consumption of the upper
layer links becomes an important problem that has to be
solved [20]. The host servers must retrieve data from the
storage servers, all of which are connected by the storage
area network (SAN). In turn, each one of these storage
resources is segmented into a number of virtual disks [36].
In a centralized storage scheme where the SAN switches
connect to the root layer switches [20], re-fetching the data
from the storage server may consume too much upper layer
resources. As described before, the server hosting the failed
VM may store a copy of the data for the affected tasks. If
the VM failure was caused by a software problem, the data
may be retrieved from the host server on which the failed
VM is placed. If the primary and the backup VMs are in
the same subnet, the transfer only consumes the edge-level
network resource. However, if the primary and the backup
VMs are in the same pod, the transfer will consume both the
edge-level and the aggregation-level network resources.

Thus, appropriate VM placement would save time and
network resources. As indicated above, the best solution
would be to place all the primary and backup VMs on
host servers in the same subnet. However, this may not be
possible if some of the host servers in the datacenter have
already been allocated to other tasks and have insufficient
free computing resources. Alternatively, a subnet may not
even contain a sufficient number of available host servers.
Therefore, it may be necessary to place the (m+k) VMs
in different subnets. The problem becomes complex now
because different VM placement strategies could result in
different network resource consumption. Suppose a service
needs (2+2) VMs for two-fault tolerance and there are two

Fig. 2. Fat-tree data center network with four ports

available subnets in the same pod, each with two available
host servers. There are two placement strategies: (1) the
two primary VMs are placed on host servers in subnet 1,
whereas the backup VMs on host servers in subnet 2; (2)
one primary and one backup VM are placed on host servers
in subnet 1, whereas the remaining two VMs on host servers
in subnet 2. In strategy 2, the data transfer only consumes
edge level network resources in the recovery stage; there-
fore, strategy 1 will consume more network resources than
strategy 2. When k is equal to m, the problem can be solved
by minimizing the difference of the number of primary and
backup VMs in each subnet. However, the problem becomes
more complex when k is smaller than m.

To address this problem, our approach aims to deter-
mine an optimal placement strategy to enhance the service
reliability and minimize the network resource consumption.

3.3 Problem Definition
The redundant VM placement problem can be formulated
as the following optimization problem:

minUP(S)andUD(S) (1)

subject to:
UP(S) = ∑

i
∑

j
(DSize(pkti))∗wi j (2)

UD(S) = ∑
i

∑
j

delayi j (3)

wi j ∈ {0,1} (4)

∑
i

xi = m (5)

xi ∈ {0,1} (6)

∑
i

yi = k (7)

yi ∈ {0,1} (8)

∑
i

zi = m+ k (9)

zi ∈ {0,1} (10)

where UP(S) denotes the total network consumption. The
value of wi j is 1 if pkti transfers through link j. When the
replication strategy is adopted, the downtime is mainly



IEEE TRANSACTIONS ON SERVICE COMPUTING, VOL. XX, NO. XX, X XXXX 5

affected by the data transfer delay. UD(S) denotes the total
data transfer delay. delayi j denotes the transfer delay of
pkti transferring through link j. The constraints in (5) and
(6) ensure there are m primary VMs for the service. The
constraints in (7) and (8) ensure there are k backup VMs
for the service. The constraint in (9) and (10) ensures the
(m+k) VM are all placed on different host servers, therefore,
the placement strategy ensures k-fault tolerance irrespective
of whether the failure of the VMs is caused by a software
fault or host server fault.

Suppose the number of subnets which contain available
host servers is max sub, then the number of available host
servers in each subnet is stored by using the following
vector:

A = [a1,a2, . . . ,amax subnet ] (11)

The solution to the problem can be defined by the following
two vectors:

M = [m1,m2, . . . ,mmax subnet ] (12)

K = [k1,k2, . . . ,kmax subnet ] (13)

where (12) denotes the number of primary VMs in each
subnet, and (13) denotes the number of backup VMs in
each subnet. Therefore, it is necessary to obtain an optimal
solution by considering all the solutions of the following
indeterminate equations:

m1 +m2 + . . .+mmax subnet = m
k1 + k2 + . . .+ kmax subnet = k
mi + ki ≤ ai, i = 1,2,3 . . . ,max subnet
m j ≥ 0, i = 1,2,3 . . . ,max subnet
ki ≥ 0, i = 1,2,3 . . . ,max subnet

(14)

There is a huge number of pods, subnets and host servers in
a cloud datacenter. Iterating over all the placement strategies
would be intractable; therefore, the problem is solved by
adopting a heuristic optimal algorithm, as discussed in the
next section.

4 PROPOSED APPROACH

The formulated problem essentially involves finding (k+m)
host servers followed by placing (k+m) VMs on those host
servers. Since there are a huge number of host servers
in a cloud datacenter, the possible number of solutions is
exponentially large. It is consequently necessary to iden-
tify a subset of good host servers from which to obtain
the best solutions. The procedure that was used to select
(m+k) good host servers is provided in Section 4.1 and
the algorithm used for placing (m+k) VMs on those host
servers is presented in Section 4.2. Given the information
about the failed and the backup VMs, a recovery strategy
decision algorithm calculates the optimal matching strategy.
The proposed recovery strategy decision algorithm will be
discussed in Section 4.3.

4.1 Phase 1: Host Servers Selection
As explained in Section 3.2, the further the two host servers
are located from one another, the greater the delay becomes.
In addition, the data transfer traffic would consume more
network resources. To avoid this situation, it is desireable to
place all VMs in a subnet that contains (m+k) available host

servers. Suppose there are two subnets, one of which has
(m+k+20) available host servers, and the other has (m+k+1)
host servers. In cases such as these, our approach would
choose the second option and leave the first option to
another service that may require more host servers. In other
words, we would follow the ”just enough rule”. The ”just
enough rule” means that we select the pod or subnet with
just enough resource, and leave the residual capacities for
future use. If none of the subnets have a sufficient number
of available host servers, the VMs must be distributed to
several subnets or even several pods. In this case, those
pods with a greater number of available host servers will be
considered first to avoid traffic between pods in the recovery
stage. We also consider selecting the subnets based on the
above rule. The host server selection procedure is shown in
Algorithm 1 as explained in the following steps:

Step 1: Sort all subnet based on available host servers.
A host server is ”available” when the server has sufficient
computing resources to host the virtual machine. Search for
a subnet subnet that satisfies the ”just enough rule”. Select
(m+k) servers from subnet and assign them to servers, and
return. (Lines 1 to 4 and Lines 49 to 53)

Step 2: Add all pods in the datacenter to a list, and sort
the list according to the available host servers. Assign the
head of the list to variable HPod. If the number of available
host server of HPod is larger than (m+k), goto Step 6. Else,
goto Step 3. (Lines 5 to 7)

Step 3: Add all host servers in the pod to servers. Iterate
the pod list and collect host servers until sum of size(servers)
and the available host servers in current pod is larger than
(m+k). If size(servers) is equal to (m+k), return. (Lines 15 to
26)

Step 4: Sort all subnets in current pod according to the
available host servers. Assign the head of the list to variable
HSubnet. If the number of available host server of HSubnet is
larger than (m+k), goto Step 5. Else, goto Step 8. (Lines 27 to
33)

Step 5: Iterate the subnet list. Search for a subnet HSubnet
that satisfies the ”just enough rule”. Select (m+k) host server
from the subnet and return. (Lines 49 to 52)

Step 6: Continue to iterate the pod list and search for a
pod pod that satisfies the ”just enough rule”. If the number
of available host servers is equal to (m+k-size(servers)), add
all host server in the pod to servers, and return. (Lines 8 to
12)

Step 7: Add all subnets in the pod to a list, and sort
the list according to the available host servers. Assign the
head subnet of the list to variable HSubnet. If the number of
available server is larger than (m+k-size(servers)), goto Step
9. Else, goto Step 8. (Lines 28 to 33)

Step 8: Add all host servers in HSubnet to servers.
Iterate the subnet list and collect host servers until sum of
size(servers) and the available host servers in current subnet
is larger than (m+k). If size(servers) is equal to (m+k), return.
(Lines 35 to 44)

Step 9: Continue to iterate the subnet list. Search for a
subnet subnet that satisfies the ”just enough rule”. Select
(m+k) from subnet and assign them to servers, and return.
(Lines 49 to 52)

The iterations enable all the ”good” host servers to be
obtained. Section 4.2 describes the procedure that was used



IEEE TRANSACTIONS ON SERVICE COMPUTING, VOL. XX, NO. XX, X XXXX 6

to place the (m+k) VMs on the (m+k) host servers.The time
complexity of Algorithm 1 is O(nlogn), and n is the number
of subnets in the datacenter.

4.2 Phase 2: Virtual Machine Placement
Placing (m+k) VMs on the (m+k) host servers requires the
number of backup and primary VMs in each subnet to be
determined.

A heuristic algorithm is used to solve this problem. Two
heuristic conditions are adopted to narrow the searching
space. If there are even number of available servers in a
subnet, the number of backup vm in the subnet should be
less or equal to the number of primary vm in the subnet.
If there are odd number of available servers in a subnet,
the number of backup vm in the subnet should be less or
equal to one plus the number of primary vm in the subnet.
Suppose there is a subnet that contains fewer primary VMs
than backup VMs. As the total number of primary VMs is
larger than or equal to the number of backup VMs, there is
at least one subnet in which the number of backup VMs is
smaller than the number of primary VMs. Now, a backup
VM in the first subnet and a primary VM in the second
subnet exchange position with each other. Compared to
the first strategy, one more failed VM in the second subnet
does not require to be mapped to a backup VM in different
subnets when k number of VMs fail at the same time. The
new placement strategy will consume less aggregation layer
network resource. The second heuristic condition is that the
subnet that contains more available host servers should be
allocated more backup VMs. If a subnet that contains more
available host servers, the difference between the number of
primary VMs and backup VMs of it should be smaller. When
the difference between the number of primary VMs and
backup VMs is larger, there is a larger chance that the data
transfer would consume more network resources. The proof
of the first heuristic condition can be found in appendix A.
The proof of the second heuristic condition can be found in
appendix B.

Our algorithm is shown in Algorithm 2 and 3, which
are recursive in nature. In each recursion, the algorithm
determines the number of backup VMs that are placed in
the current subnet, and the rest backup VMs are placed
in the following subnets. When the number of rest backup
VM equals 0 or the last subnet has reached, the resource
consumption of the current placement strategy is comput-
ed and compared with the current optimal one. If the
resource consumption is smaller than that of the current
optimal strategy, the current strategy is considered optimal.
When the current placement cannot satisfy the two heuristic
conditions, the algorithm terminates current recursion and
backtrace.

When a backup VM fails, a new backup VM is searched
around the old one.

4.3 Phase 3: Recovery Strategy Decision
When one or more VMs fail, a recovery strategy has to be
decided upon, and each failed VM has to be mapped to a
backup VM. All tasks in the waiting queue of the failed VM
are rescheduled to its mapping backup VM, and the data to
be processed have to be retrieved again to the backup VM.

Algorithm 1: Host Server Selection
Input: the number of needed primary VMs m,the

number of needed backup VMs k
Output: list of interesting host servers servers

1 sort all subnets by the number of available host
servers and subnet = subnets−>head;

2 if (subnet−> f reeServerSize)≥ (m+k) then
3 goto final2;
4 end
5 sort pods by the number of available host servers;
6 pod = pods.head;
7 if (pod. f reeServerSize)≥ (m+k) then
8 next = Succ(pod);
9 while (next. f reeServerSize)≥ (m+k) do

10 pod = next and next =Succ(pod);
11 end
12 add all subnets in pod to subnets and goto final1;
13 end
14 else
15 add all available host servers in pod to servers;
16 while size(servers) < (m+k) do
17 pod = Succ(pod);
18 if size(pod. f reeServerSize)+size(servers) > (m+k)

then
19 add all subnets in pod to subnets;
20 goto final1;
21 end
22 else
23 add all available host servers in pod to

servers;
24 end
25 end
26 end
27 final1:
28 sort subnets by the number of available host servers;
29 subnet = subnets.head;
30 final2:
31 if (subnet. f reeServerSize)+ size(servers)≥ (m+k) then
32 goto final 3;
33 end
34 else
35 add all available host servers in subnet to servers;
36 while size(servers) < (m+k) do
37 subnet = Succ(subnet);
38 if (subnet. f reeServerSize)+size(servers) ≥ (m+k)

then
39 goto final3;
40 end
41 else
42 add all available servers in subnet to servers;
43 return servers;
44 end
45 end
46 end
47 final3:
48 next = Succ(subnet);
49 while (next. f reeServerSize)+ size(servers) ≥ (m+k) do
50 subnet = next and next =Succ(subnet);
51 end
52 select (m+ k)- size(servers) available servers from

subnet, and assigned them to servers;
53 return servers;



IEEE TRANSACTIONS ON SERVICE COMPUTING, VOL. XX, NO. XX, X XXXX 7

Algorithm 2: Virtual Machine Placement on Specific
Servers

Input: interesting host servers servers, the number of
backup servers k

Output: int strategy[]
1 Obtain all the ”good” subnets that at least have one

”good” host server;
2 Store the ”good” host server number of each

interesting subnet to vector subnets[];
3 Sort subnets[] by the number of ”good” host server

desc;
4 int strategy[size(subnets)];
5 int optimal[size(subnets)];
6 int mincost = ∞;
7 optimal placement strategy

searching(subnets,strategy,optimal,k,mincost,1);
8 return strategy;

Algorithm 3: Optimal Placement Strategy Searching
Input: subnets, strategy, optimal, the number of

un-placed backup VMs rest, mincost, nested
level i

Output: The placement strategy
1 if rest == 0 then
2 strategy[i] = rest;
3 Compute cost of current strategy;
4 if currentcost ≤ mincost then
5 minCost=currentcost;
6 copy(strategy[], optimal[]);
7 end
8 return;
9 end

10 if i == size(subnets) then
11 if rest > min(strategy[i-1], ceil(subnet[i]/2)) then
12 return;
13 end
14 strategy[i] = rest;
15 Compute cost of current strategy;
16 if currentcost ≤ mincost then
17 mincost=currentcost;
18 copy(strategy[], optimal[]);
19 end
20 return;
21 end
22 n = min(strategy[i-1], ceil(subnets[i]/2), rest);
23 while n ≥ 0 do
24 strategy[i]=n;
25 optimal placement strategy

searching(subnets,strategy,optimal,k-n,cost);
26 n- -;
27 end
28 return;

If the VM fails because of a software fault, the particular
data block may be obtained from the host server on which
the failed VM resides. Given the information on the VM
failure caused by a software fault and the backup VMs,
the recovery strategy decision algorithm matches the failed
VMs and the backup VMs. Then each failed VM has to
be mapped to a backup VM. The recovery strategy should
minimize the total network resource consumption. In this
case it is possible to formulate the recovery strategy decision
problem as a minimum weight matching in bipartite graphs
[37] [38].

Given a complete bipartite graph G=(V ,E) with
bipartition(VF ,VB), where V is the set of all failed VMs and
backup VMs, VF is the set of all failed VMs, VB is the set of all
backup VMs, and E is the set of shortest paths connecting
nodes for each pair of VMs from different partitions. A
matching set M is a subset of E. Suppose w denotes the
weight function, and then it is necessary to find a matching
of minimum weights where the weight of matching M is
given by:

w(M) = ∑
e∈M

(w(e)) (15)

In other words, the recovery problem can be formulated as
the following:

min ∑
(VF ,VB)

(w(v f ,vb)∗ x(v f ,vb)) (16)

subject to:

∑
(v f )

(x(v f ,vb) = 1),∀v f ⊂VF (17)

x(v f ,vb) ∈ 0,1,∀v f ⊂VF ,∀vb ⊂VB (18)

w(v f ,vb) = DSize(v f )∗ length(e(v f ,vb)) (19)

where (17) ensures each failed VM is matched to a backup
VM. In (18), x(v f ,vb) = 1 if the edge (v f ,vb) belongs to the
matching; otherwise, x(v f ,vb) = 0. DSize in (19) returns the
data size that can be retrieved from the host server on which
v f is placed. Therefore, w(v f ,vb) denotes the transfer cost.

As explained before, information that is exchanged be-
tween host servers in the same subnet only utilizes an edge
switch; however, when two hosts are in the same pod,
all communicated traffic is routed through both the edge
and the aggregation switches. Therefore, the transfer will
consume more network resource and the delay becomes
greater. For each backup VM, we try to find a corresponding
failed VM in the same subnet for it if there is one. Otherwise,
VMs in different subnets would have to be mapped.

Algorithm 4 details our recovery strategy decision algo-
rithm:

Step 1: For each backup VM, all failed VMs in the same
subnet that have not been matched are sorted according to
their data size. The backup VM is mapped to the failed VM
with the largest data size.

Step 2: If there still remain failed VMs that have not been
matched to a backup VM, all unmatched failed VMs in the
same pod are sorted according to data size. The backup VM
is mapped to the failed VM with the largest data size in the
pod.

Step 3: If there still remain failed VMs that have not been
matched to a backup VM, the backup VMs are randomly



IEEE TRANSACTIONS ON SERVICE COMPUTING, VOL. XX, NO. XX, X XXXX 8

matched to the failed VMs. In addition, the data are re-
fetched from the storage server.

If we iterate all subnets concurrently, the time complexity
of Algorithm 4 is O(nlogn). n is the number of failed VM. We
note that the proposed network-topology-aware redundant
VM placement approach aims at enhancing the reliability of
server-based cloud services whose fault-tolerance level can
be measured and assured in terms of the k-fault-tolerance
metric. In practice, rebooting or replacing a specific failed
VM on the same hosting server could be attempted in a con-
trolled manner (as a precondition for executing the afore-
mentioned recovery strategy) as a VM-specific optimization
of the proposed approach, though the VM failure handling
scheme is not helpful to the k-fault-tolerance measurement.
The scheme needs be done in a controlled manner because
service-specific VM management policy may need be fol-
lowed, particularly when the root cause is unknown (which
may lead to continual failure recovery attempts caused by
partial server failures).

5 EXPERIMENTAL EVALUATIONS

In the following sections, the experimental setting is first
outlined. Then OPVMP is compared with other four repre-
sentative approaches in terms of the total network resource
consumption and other performance metrics. Finally, the
parameters of our approach are studied.

5.1 Experimental Setup
We construct an experimental platform based on our previ-
ous research results [39] [28]. In our experiment, a 32-port
fat-tree data center network is constructed. The capacity of
the root-layer link and aggregation-layer link is set as 10
Gbps, and the capacity of the edge-layer link is set as 1 Gbps
[21]. There are 16 host servers in each subnet. Each of these
host servers can host four VMs at most. The performance
of our method (OPVMP) was studied by comparing it with
four other existing representative methods:

• RSV MP. Data are re-fetched from the central storage
server in the recovery stage. This approach does not
take the network topology into consideration. After
having selected (m+k) host servers, all primary VMs
and backup VMs are randomly placed on the selected
host servers in the data center [25].

• RLV MP. Data are re-fetched from the central storage
server or the host server on which the failed VM
resides. The strategy is determined by the network
distance and whether a data copy exists. After having
selected (m+k) host servers, all primary VMs and
backup VMs are randomly placed on the selected
host servers.

• PLV MP. Data are re-fetched from the central storage
server or the host server on which the failed VM
resides. The strategy is determined by the network
distance and whether a data copy exists. After having
selected (m+k) host servers, the backup VMs are
uniformly distributed across the pods.

• SLV MP. Data are re-fetched from the central storage
server or the host server on which the failed VM
resides. The strategy is determined by the network

Algorithm 4: Recovery Strategy Decision
Input: Set of all failed host servers V MF , set of all

backups V MB, w(vm f ,vmb) for each vm f ∈ V MF

and vmb ∈ V MB

Output: Map maps between each failed host server
and its backup

1 add all subnets that contains at least one backup VM
to subnets ;

2 for each subnet subneti in subnets do
3 add V MF ∩ V M(subneti) to list srcV M;
4 add V MB ∩ V M(subneti) to list dstV M;
5 sort srcV M f by data size;
6 while srcV M is not /0 and dstV M is not /0 do
7 key = srcV M-> head;
8 value = dstV M-> head;
9 add < key ,value > to maps;

10 remove key from PMF and srcV M ;
11 remove value from PMB and dstV M ;
12 end
13 end
14 if V MF is not /0 then
15 for each pod podi in pods do
16 clear srcV M and add V MF ∩ V M(podi) to list

srcV M;
17 clear dstV M add V MB ∩ V M(podi) to list dstV M;
18 while srcV M is not /0 and dstV M is not /0 do
19 key = srcV M-> head;
20 value = dstV M-> head;
21 add < key ,value > to maps;
22 remove key from PMF and srcV M ;
23 remove value from PMB and dstV M ;
24 end
25 end
26 end
27 if V MF is not /0 then
28 while V MF is not /0 do
29 key = V MF -> head;
30 value = V MB -> head;
31 add < key ,value > to maps;
32 remove key from PMF ;
33 remove value from PMB;
34 end
35 end
36 return maps;

distance and whether a data copy exists. After having
selected (m+k) host servers, the backup VMs are
uniformly distributed across the subnets.

All the methods were evaluated using the following perfor-
mance metrics:

• TDelay: Total data transfer delay, T Delay, can be
calculated as follows:

T Delay = ∑
i

delay(pkti) (20)

where pkti denotes a network packet.



IEEE TRANSACTIONS ON SERVICE COMPUTING, VOL. XX, NO. XX, X XXXX 9

• PRoot: The total size of network packet that has been
transferred by the root layer switches. PRoot can be
calculated as follows:

PRoot = ∑
i

wr × size(pkti) (21)

where wr denotes the frequency with which packet
pkti has been transferred by the root switches.

• PAgg: The total size of network packet that has been
transferred by the aggregation layer switches. PAgg
can be calculated as follows:

PAgg = ∑
i

wa × size(pkti) (22)

where wa denotes the frequency with which packet
pkti has been transferred by the aggregation switches.

• PEdge: The total size of network packet that has been
transferred by the edge layer switches. PEdge can be
calculated as follows:

PEdge = ∑
i

we × size(pkti) (23)

where we denotes the frequency with which packet
pkti has been transferred by the edge switches.

• PTotal: The total size of all packet that has been trans-
ferred by the all switches, which can be calculated as
follows:

PTotal = PRoot +PAgg+PEdge (24)

where wr denotes the frequency with which packet
pkti has been transferred by the root switches.

5.2 Performance Evaluations

The experiment involved 20 services, each of which in-
volved 50 primary VMs and 40 backup VMs. Two hundred
VM failure events were triggered. 4000 data processing tasks
were generated. The data size of each task is 300 MB and the
task size is set as 10 minutes. The task arrival rate of each
service is 200 per hour. The performance of all approaches
was studied. Fig.3 illustrates the performance of T Delay.
Figs. 4 to 7 present the performance of network resource
consumption. Figs. 4 to 6 provide the results of PRoot, PAgg,
and PEdge, respectively. Fig. 7 depicts the results of PTotal.
The results demonstrate that:

• Compared to other approaches, if the data are re-
fetched from the central storage server, more data are
processed by the root and the aggregation switches.
In addition, the data transfer delay is larger. This is
because while retrieving the data from the neighbor-
ing host servers is possible, it is unnecessary for the
data traffic transfer to consume upper layer network
resources, and the data transfer takes up less time.
As our approach OPVMP takes the network topolo-
gy and the service characteristics into consideration
when solving the optimal problem, it consumes the
smallest amount of root and aggregation layer net-
work resources.

• Among all the approaches, the edge layer network
resource consumption of RSVMP is less than those of
other approaches. That’s because when the primary

Fig. 3. The performance of total data transfer delay (s)

Fig. 4. The performance of root layer network resource consumption
(MB)

VM and the backup VM are in the same pod, the data
would transfer through the edge layer switch twice.

• Of all seven approaches, our approach consumes the
least amount of total network resources, because it
takes up less root and aggregation layer network
resources than the other approaches.

5.3 Impact of Parameter k

This section contains the result of the study of the impact
of parameter k on network resource consumption. The ex-
periment involved 10 services, each of which involved 50
primary VMs. A hundred VM failure events were triggered.
2000 data processing tasks were generated. The data size of
each task is 300 MB and the task size is set as 10 minutes.

The performance metrics consisted of PRoot, PAgg,
PEdge, and PTotal. As shown in Fig. 8, caused by some
random factor, the network resource consumption increases
a little when k increases from 35 to 40. However, the total
amount of data that are processed by the root switches,
aggregation switches and the edge switches in our approach
almost show a decreasing trend when the value of param-
eter k increases from 20 to 50. Because an increase in k
results in an increase in the number of backup VMs for the



IEEE TRANSACTIONS ON SERVICE COMPUTING, VOL. XX, NO. XX, X XXXX 10

Fig. 5. The performance of aggregation layer network resource con-
sumption (MB)

Fig. 6. The performance of edge layer network resource consumption
(MB)

Fig. 7. The performance of total network resource consumption (MB)

Fig. 8. Impact of parameter k to root layer, aggregation layer, and edge
layer network resource consumption (MB), k represents backup VM
number

Fig. 9. Impact of parameter k to total network resource consumption, k
represents backup VM number.

Fig. 10. Impact of task arrival rate to root layer, aggregation layer, and
edge layer network resource consumption (MB). The task arrival rate of
each service increases from 40 per hour to 200 per hour



IEEE TRANSACTIONS ON SERVICE COMPUTING, VOL. XX, NO. XX, X XXXX 11

Fig. 11. Impact of task arrival rate to total network resource con-
sumption. The task arrival rate of each service increases from 40 per
hour to 200 per hour in our experiment

same service. There is a greater chance that the primary
and backup VMs are in the same subnet. Therefore, our
approach consumes less upper layer network resources in
the recovery stage. Because this reduction occurs as a result
of an increase in the value of parameter k, the total network
resources also show a decreasing trend in Fig. 9.

5.4 Impact of Parameter Task Arrival Rate
We present the impact of task arrival rate on network
resource consumption in this section. There are 11 services.
Each service has 50 primary VMs and 40 backup VMs.
We generate 2000 data block processing tasks. The data
size of each task is 300 MB and the task size is set as 10
minutes. We trigger 100 virtual machine failure events. The
task arrival rate of all services increases from 40 per hour to
200 per hour. To show the impact of parameter arrival rate,
we calculate the network resource consumption difference
between our approach and RSVMP. The performance met-
rics include: root-layer, aggregation-layer, edge-layer, and
total network resource consumption difference between our
approach and RSVMP.

As shown in Fig. 10, the root-layer, the aggregation-
layer and the edge-layer network resource consumption
difference increases with the increase of task arrival rate. As
shown in Fig. 11, the total network resource consumption
also increases with the increase of task arrival rate. When
the task arrival rate increases, the task waiting queue of
each VM becomes longer. A failure event will affect more
tasks and the total re-fetched data increase. Therefore, our
approach can save more upper layer network resource com-
paring to RSVMP, and the network resource consumption
difference increases.

6 CONCLUSIONS AND FUTURE WORK

This paper aims at enhancing the reliability of server-
based cloud services whose fault-tolerance level can be mea-
sured and assured in terms of the replication-based k-fault-
tolerance metric. It proposes a novel network-topology-
aware redundant VM placement approach to minimizing
the consumption of network resources when primary VM

failures need be recovered by backup VMs under the k-fault-
tolerance constraints. The proposed approach is a three-
step process: host server selection, optimal redundant VM
placement, and recovery strategy decision. By exploiting
the characteristics of the datacenter network, a heuristic
algorithm capable of efficiently selecting appropriate host
servers and determining the optimal VM placement strategy
is presented. Finally, the recovery strategy decision problem
is formulated as a maximum weight matching in bipartite
graphs problem. An optimal algorithm is presented to solve
the problem. The experimental evaluation results show that
the proposed approach consumes less network resources
than four other representative approaches.

Our future work includes: (1) reducing the complexity
of our approach based on some probabilistic analysis, (2)
trading off between the effect of the edge switch failure and
the network resource saving by adopting a fault avoidance
approach, and (3) considering the reliability problem for a
complex cloud workflow service.

ACKNOWLEDGMENTS

The work presented in this study is supported by NSFC
(61472047), NSFC (61272521), Guangdong Natural Science
Foundation (Project No. 2014A030313151), and the Funda-
mental Research Funds for the Central Universities. Shang-
guang Wang is the corresponding author.

REFERENCES

[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwin-
ski, G. Lee, D. A. Patterson, A. Rabkin, I. Stoica, and M. Zaharia,
“Above the clouds: A berkeley view of cloud computing,” Feb
2009.

[2] W. Voorsluys, J. Broberg, and R. Buyya, “Introduction to cloud
computing,” Cloud computing: Principles and paradigms, pp. 3–37,
2011.

[3] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic,
“Cloud computing and emerging it platforms: Vision, hype, and
reality for delivering computing as the 5th utility,” Future Genera-
tion computer systems, vol. 25, no. 6, pp. 599–616, 2009.

[4] B. P. Rimal, E. Choi, and I. Lumb, “A taxonomy and survey of
cloud computing systems,” in INC, IMS and IDC, 2009. NCM’09.
Fifth International Joint Conference on, pp. 44–51, Ieee, 2009.

[5] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Kon-
winski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, et al., “A view
of cloud computing,” Communications of the ACM, vol. 53, no. 4,
pp. 50–58, 2010.

[6] Z. Xia, X. Wang, X. Sun, and Q. Wang, “A secure and dynamic
multi-keyword ranked search scheme over encrypted cloud data,”

[7] M. A Vouk, “Cloud computing–issues, research and implementa-
tions,” CIT. Journal of Computing and Information Technology, vol. 16,
no. 4, pp. 235–246, 2008.

[8] Y. Ren, J. Shen, J. Wang, J. Han, and S. Lee, “Mutual verifiable
provable data auditing in public cloud storage,” Journal of Internet
Technology, vol. 16, no. 2, pp. 317–323, 2015.

[9] S. Marston, Z. Li, S. Bandyopadhyay, J. Zhang, and A. Ghalsasi,
“Cloud computingłthe business perspective,” Decision Support Sys-
tems, vol. 51, no. 1, pp. 176–189, 2011.

[10] M. Melo, P. Maciel, J. Araujo, R. Matos, and C. Araujo, “Availabil-
ity study on cloud computing environments: Live migration as
a rejuvenation mechanism,” in Dependable Systems and Networks
(DSN), 2013 43rd Annual IEEE/IFIP International Conference on,
pp. 1–6, IEEE, 2013.

[11] R. Jhawar, V. Piuri, and M. Santambrogio, “Fault tolerance man-
agement in cloud computing: A system-level perspective,” Systems
Journal, IEEE, vol. 7, pp. 288–297, June 2013.

[12] A. introduction to designing reliable cloud services, “white
paper of microsoft,” 2013. http://www.microsoft.com/en-
us/download/details.aspx?id=34683.



IEEE TRANSACTIONS ON SERVICE COMPUTING, VOL. XX, NO. XX, X XXXX 12

[13] E. Bauer and R. Adams, Reliability and availability of cloud comput-
ing. John Wiley & Sons, 2012.

[14] M. R. Lyu et al., Handbook of software reliability engineering, vol. 222.
IEEE computer society press CA, 1996.

[15] Q. Zhang, L. Cheng, and R. Boutaba, “Cloud computing: state-
of-the-art and research challenges,” Journal of internet services and
applications, vol. 1, no. 1, pp. 7–18, 2010.

[16] Y.-S. Dai, B. Yang, J. Dongarra, and G. Zhang, “Cloud service
reliability: Modeling and analysis,” in 15th IEEE Pacific Rim In-
ternational Symposium on Dependable Computing, pp. 1–17, 2009.

[17] M. Schwarzkopf, D. G. Murray, and S. Hand, “The seven deadly
sins of cloud computing research,” in USENIX HotCloud, pp. 1–5,
USENIX, 2012.

[18] W. Zhao, P. Melliar-Smith, and L. Moser, “Fault tolerance middle-
ware for cloud computing,” in Cloud Computing (CLOUD), 2010
IEEE 3rd International Conference on, pp. 67–74, July 2010.

[19] I. Goiri, F. Julia, J. Guitart, and J. Torres, “Checkpoint-based fault-
tolerant infrastructure for virtualized service providers,” in Net-
work Operations and Management Symposium (NOMS), 2010 IEEE,
pp. 455–462, April 2010.

[20] N. Limrungsi, J. Zhao, Y. Xiang, T. Lan, H. Huang, and S. Subrama-
niam, “Providing reliability as an elastic service in cloud comput-
ing,” in Communications (ICC), 2012 IEEE International Conference
on, pp. 2912–2917, June 2012.

[21] J. Xu, J. Tang, K. Kwiat, W. Zhang, and G. Xue, “Survivable
virtual infrastructure mapping in virtualized data centers,” in
Cloud Computing (CLOUD), 2012 IEEE 5th International Conference
on, pp. 196–203, June 2012.

[22] Z. Zheng, Y. Zhang, and M. Lyu, “Cloudrank: A qos-driven
component ranking framework for cloud computing,” in Reliable
Distributed Systems, 2010 29th IEEE Symposium on, pp. 184–193, Oct
2010.

[23] Z. Zheng, T. Zhou, M. Lyu, and I. King, “Ftcloud: A component
ranking framework for fault-tolerant cloud applications,” in Soft-
ware Reliability Engineering (ISSRE), 2010 IEEE 21st International
Symposium on, pp. 398–407, Nov 2010.

[24] G. Jung, K. Joshi, M. Hiltunen, R. Schlichting, and C. Pu, “Per-
formance and availability aware regeneration for cloud based
multitier applications,” in Dependable Systems and Networks (DSN),
2010 IEEE/IFIP International Conference on, pp. 497–506, June 2010.

[25] F. Machida, M. Kawato, and Y. Maeno, “Redundant virtual ma-
chine placement for fault-tolerant consolidated server clusters,”
in Network Operations and Management Symposium (NOMS), 2010
IEEE, pp. 32–39, April 2010.

[26] A. S. Tanenbaum and M. Van Steen, Distributed systems. Prentice-
Hall, 2007.

[27] A. Zhou, S. Wang, C. Yang, L. Sun, Q. Sun, and F. Yang, “Ft-
cloudsim: support for cloud service reliability enhancement simu-
lation,” International Journal of Web and Grid Services, vol. 11, no. 4,
pp. 347–361, 2015.

[28] A. Zhou, S. Wang, Q. Sun, H. Zou, and F. Yang, “Ftcloudsim: a
simulation tool for cloud service reliability enhancement mecha-
nisms,” in Proceedings Demo & Poster Track of ACM/IFIP/USENIX
International Middleware Conference, pp. 1–2, 2013.

[29] M. Zhang, H. Jin, X. Shi, and S. Wu, “Virtcft: A transparent vm-
level fault-tolerant system for virtual clusters,” in Parallel and Dis-
tributed Systems (ICPADS), 2010 IEEE 16th International Conference
on, pp. 147–154, Dec 2010.

[30] Z. Zheng, T. Zhou, M. Lyu, and I. King, “Component ranking
for fault-tolerant cloud applications,” Services Computing, IEEE
Transactions on, vol. 5, pp. 540–550, Fourth 2012.

[31] “Us government cloud computing technology roadmap volume i
high-priority requirements to further usg agency cloud computing
adoption,” 2011.

[32] A. L. M. Al-Fares and A. Vahdat, “A scalable, commodity data cen-
ter network architecture,” No. 63-74, ACM SIGCOMM Computer
Communication Review, 2008.

[33] R. Niranjan Mysore, A. Pamboris, N. Farrington, N. Huang, P. Mir-
i, S. Radhakrishnan, V. Subramanya, and A. Vahdat, “Portland:
a scalable fault-tolerant layer 2 data center network fabric,” in
ACM SIGCOMM Computer Communication Review, vol. 39, pp. 39–
50, ACM, 2009.

[34] K. Bilal, M. Manzano, S. Khan, E. Calle, K. Li, and A. Zomaya,
“On the characterization of the structural robustness of data center
networks,” Cloud Computing, IEEE Transactions on, vol. 1, pp. 1–1,
Jan 2013.

[35] “Cisco data center infrastructure 2.5 design guide,” Cisco Systems,
Inc., San Jose, CA 95134-1706, USA, 2007.

[36] A. Singh, M. Korupolu, and D. Mohapatra, “Server-storage vir-
tualization: integration and load balancing in data centers,” in
Proceedings of the 2008 ACM/IEEE conference on Supercomputing,
p. 53, IEEE Press, 2008.

[37] J. E. Hopcroft and R. M. Karp, “An nˆ5/2 algorithm for maximum
matchings in bipartite graphs,” SIAM Journal on computing, vol. 2,
no. 4, pp. 225–231, 1973.

[38] R. E. Burkard and E. Cela, Linear assignment problems and extensions.
Springer, 1999.

[39] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De Rose, and
R. Buyya, “Cloudsim: a toolkit for modeling and simulation of
cloud computing environments and evaluation of resource provi-
sioning algorithms,” Software: Practice and Experience, vol. 41, no. 1,
pp. 23–50, 2011.

Ao Zhou is an assistant professor at the S-
tate Key Laboratory of Networking and Switch-
ing Technology, Beijing University of Posts and
Telecommunications. She received her Ph.D. de-
gree in computer science at Beijing University of
Posts and Telecommunications of China in 2015.
Her research interests include cloud computing,
service reliability.

Shangguang Wang is an associate professor
at the State Key Laboratory of Networking and
Switching Technology, Beijing University of Posts
and Telecommunications. He received his Ph.D.
degree in computer science at Beijing Univer-
sity of Posts and Telecommunications of China
in 2011. His PhD thesis was awarded as out-
standing doctoral dissertation by BUPT in 2012.
His research interests include Service Comput-
ing, Cloud Services, QoS Management. He is a
member of IEEE.

Bo Cheng received the PhD degree in computer
science and technology from the University of
Electronics Science and Technology of China in
2006. His research interests include multimedia
communications, and services computing. Cur-
rently, he is an associate professor of state key
laboratory of networking and switching technolo-
gy of Beijing University of posts and telecommu-
nications.

Zibin Zheng is an associate professor at Sun
Yat-sen University, Guangzhou, China. He re-
ceived Outstanding Ph.D. Thesis Award of The
Chinese University of Hong Kong at 2012,
ACM SIGSOFT Distinguished Paper Award
at ICSE2010, Best Student Paper Award at
ICWS2010, and IBM Ph.D. Fellowship Award
at 2010. His research interests include service
computing and cloud computing.



IEEE TRANSACTIONS ON SERVICE COMPUTING, VOL. XX, NO. XX, X XXXX 13

Fangchun Yang received his PhD degree in
communication and electronic system from the
Beijing University of Posts and Telecommunica-
tion in 1990. He is currently a professor at the
Beijing University of Posts and Telecommunica-
tion, China. He has published 6 books and more
than 80 papers. His current research interests in-
clude network intelligence, services computing,
communications software, soft switching tech-
nology, and network security. He is a fellow of
the IET.

Rong Chang received his PhD degree in com-
puter science and engineering from the Univer-
sity of Michigan in 1990. He is with IBM Re-
search leading a global team creating innovative
IoT cloud services technologies. He holds 30+
patents and has published 40+ papers. He is
Member of IBM Academy of Technology, ACM
Distinguished Engineer, Chair of IEEE Computer
Society TCSVC, and Associate Editor of IEEE
Trans. on Services Computing.

Michael R. Lyu is currently a Professor in the
Department of Computer Science and Engineer-
ing, The Chinese University of Hong Kong. His
research interests include software reliability en-
gineering, distributed systems, service comput-
ing, information retrieval, social networks, and
machine learning. He has published over 400
refereed journal and conference papers in these
areas. Dr. Lyu is an IEEE Fellow and an AAAS
Fellow for his contributions to software reliability
engineering and software fault tolerance.

Rajkumar Buyya is a Fellow of IEEE, Professor
of Computer Science and Software Engineer-
ing, Future Fellow of the Australian Research
Council, and Director of the Cloud Computing
and Distributed Systems (CLOUDS) Laboratory
at the University of Melbourne, Australia. He is
also serving as the founding CEO of Manjrasoft,
a spin-off company of the University, commer-
cializing its innovations in Cloud Computing. He
has authored over 450 publications and five text
books including ”Mastering Cloud Computing”

published by McGraw Hill and Elsevier/Morgan Kaufmann, 2013 for
Indian and international markets respectively. Software technologies for
Grid and Cloud computing developed under Dr. Buyya’s leadership have
gained rapid acceptance and are in use at several academic institutions
and commercial enterprises in 40 countries around the world. Dr. Buyya
has led the establishment and development of key community activities,
including serving as foundation Chair of the IEEE Technical Committee
on Scalable Computing and five IEEE/ACM conferences. These contri-
butions and international research leadership of Dr. Buyya are recog-
nized through the award of ”2009 IEEE TCSC Medal for Excellence in
Scalable Computing”. He is currently serving as Co-Editor-in-Chief of
Journal of Software: Practice and Experience, which was established
40+ years ago.


